A Convergent Iterative Hard Thresholding for Nonnegative Sparsity Optimization
نویسندگان
چکیده
The iterative hard thresholding (IHT) algorithm is a popular greedy-type method in (linear and nonlinear) compressed sensing and sparse optimization problems. In this paper, we give an improved iterative hard thresholding algorithm for solving the nonnegative sparsity optimization (NSO) by employing the Armijo-type stepsize rule, which automatically adjusts the stepsize and support set and leads to a sufficient decrease of the objective function each iteration. Consequently, the improved IHT algorithm enjoys several convergence properties under standard assumptions. Those include the convergence to α-stationary point (also known as L-stationary point in literature if the objective function has Lipschitz gradient) and the finite identification of the true support set. We also characterize the conditions that the full sequence converges to a local minimizer of NSO and establish its linear convergence rate. Extensive numerical experiments are included to demonstrate the good performance of the proposed algorithm.
منابع مشابه
A new inexact iterative hard thresholding algorithm for compressed sensing
Compressed sensing (CS) demonstrates that a sparse, or compressible signal can be acquired using a low rate acquisition process below the Nyquist rate, which projects the signal onto a small set of vectors incoherent with the sparsity basis. In this paper, we propose a new framework for compressed sensing recovery problem using iterative approximation method via 0 minimization. Instead of dir...
متن کاملSparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms
This paper treats the problem of minimizing a general continuously differentiable function subject to sparsity constraints. We present and analyze several different optimality criteria which are based on the notions of stationarity and coordinate-wise optimality. These conditions are then used to derive three numerical algorithms aimed at finding points satisfying the resulting optimality crite...
متن کاملA Tight Bound of Hard Thresholding
This1 paper is concerned with the hard thresholding technique which sets all but the k largest absolute elements to zero. We establish a tight bound that quantitatively characterizes the deviation of the thresholded solution from a given signal. Our theoretical result is universal in the sense that it holds for all choices of parameters, and the underlying analysis only depends on fundamental a...
متن کاملDual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization
Iterative Hard Thresholding (IHT) is a class of projected gradient descent methods for optimizing sparsity-constrained minimization models, with the best known efficiency and scalability in practice. As far as we know, the existing IHT-style methods are designed for sparse minimization in primal form. It remains open to explore duality theory and algorithms in such a non-convex and NP-hard prob...
متن کاملGradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Hard Thresholding Pursuit (HTP) is an iterative greedy selection procedure for finding sparse solutions of underdetermined linear systems. This method has been shown to have strong theoretical guarantee and impressive numerical performance. In this paper, we generalize HTP from compressive sensing to a generic problem setup of sparsity-constrained convex optimization. The proposed algorithm ite...
متن کامل